Telegram Group & Telegram Channel
پَچ‌پَچ کردن تمام آن چیزی است که نیاز دارید.

اگر در این چند سال همراه ما بوده‌ باشید یادتون هست که معماری‌های ViT و MLP-Mixer سعی داشتند نشون بدن که برای به دست آوردن یک بازنمایی خوب از تصویر، لازم نیست که به کانولوشن مقید باشیم. ViT نشون داد که میشه با پچ‌پچ کردن (یعنی این که تصویر رو به تکه‌های کوچیکتر تقسیم کردن) و بعد اعمال اتشنن و MLP پچ‌محور این بازنمایی خوب رو به دست آورد و MLP-Mixer هم گفت که به همون اتنشن هم نیازی نیست و میشه بعد از پچ‌پچ‌کردن با دو تا MLP که یکیشون Depth-wise و دیگری Patch-wise هست بازنمایی خوبی را یاد گرفت. (قبلا در https://www.tg-me.com/sg/NLP stuff/com.nlp_stuff/81 و https://www.tg-me.com/sg/NLP stuff/com.nlp_stuff/168 این دو معماری رو معرفی کرده بودیم)

حالا یک مقاله که در TMLR چاپ شده اومده و نویسندگانش گفتن که اصلا بحث اتنشن و MLP نیست. اون چیزی که باعث یادگیری بازنمایی خوب میشه خود patch کردن و استفاده از یک الگوی متقارن (یا به قول خودش isotropic) بین این پچ‌های مختلف هست. بر همین ایده، خودشون اومدن و یک مدل به نام Conv-Mixer ارائه دادن. ساختار و نحوه عملکرد این مدل این شکلیه که تصویر ورودی رو مثل ViT و MLP-Mixer میاد و پچ‌پچ می‌کنه و روی هر پچی هم patch-embedding رو اعمال میکنه (اینجا برای این که ژانگولربازی دربیاره بگه من تو مدلم از هیچ MLP استفاده نکردم اومده و این فرآیند Patch Embedding رو هم با کانولوشن با استراید اندازه سایز پچ انجام داده). سپس در مرحله بعدی میاد و لایه‌ای به نام Conv-Mixer رو به تعداد عمق d روی این پچ‌ها اعمال میکنه. اما هر کدوم از این لایه‌های ConvMixer چه شکلی هستند؟ هر لایه ConvMixer در واقع از دو کانولوشن تشکیل شده. یک کانولوشن که صرفا به صورت depth-wise روی فیچرهای حاضر در یک عمق مشخص کانال و در مکان‌های مختلف اون عمق اعمال میشه و یک کانولوشن دیگه که اون هم به صورت صرفا spatial-wise بر روی فیچرهای حاضر در یک مکان مشخص و در عمق‌های مختلف اون مکان اعمال میشه. در نهایت هم بعد از اعمال d تا از این لایه‌ها میاد و با میانگین‌گیری از بازنمایی پچ‌های مختلف یک بازنمایی کلی برای تصویر به دست میاره. عکس کد این مدل رو پیوست‌ کردیم که بسیار هم ساده است و اگر ببینیدش یحتمل بهتر بتونید بفهمید ماجرا رو.

بعد مقاله اومده و مدل Conv-Mixer و بقیه رقبا نظیر Resnet و ViT و MLP-Mixer رو روی دیتاست ImageNet-1k آموزش داده و نشون داده که Conv-Mixer نسبت به بقیه رقبا دقت بالاتری گرفته و البته تعداد پارامتر کمتر و سرعت Throughput بیشتری هم داره. نکته جالب این مقاله به نظر اینه که نشون داده که برای انتقال بازنمایی بین پچ‌ها لازم نیست که از فرآیند Self-Attention یا MLP-Mixer که هر دو فرآیندهای سنگینی به لحاظ حافظه‌ای هستند و استفاده کنیم و به صورت global اطلاعات بین پچ‌ها رو انتقال بدیم. بلکه میشه با خود کانولوشن این فرآیند انتقال اطلاعات رو به صورت لوکال پیاده‌سازی کنیم. یحتمل این پایان کار نیست و باز هم در آینده مدل‌های بیشتری خواهیم دید که سعی دارن با تغییر در معماری با معماری‌های سابق نظیر ResNet و ViT و MLP-Mixer و البته Conv-Mixer رقابت کنند.

لینک مقاله:
https://openreview.net/pdf?id=rAnB7JSMXL


#read
#paper

@nlp_stuff



tg-me.com/nlp_stuff/322
Create:
Last Update:

پَچ‌پَچ کردن تمام آن چیزی است که نیاز دارید.

اگر در این چند سال همراه ما بوده‌ باشید یادتون هست که معماری‌های ViT و MLP-Mixer سعی داشتند نشون بدن که برای به دست آوردن یک بازنمایی خوب از تصویر، لازم نیست که به کانولوشن مقید باشیم. ViT نشون داد که میشه با پچ‌پچ کردن (یعنی این که تصویر رو به تکه‌های کوچیکتر تقسیم کردن) و بعد اعمال اتشنن و MLP پچ‌محور این بازنمایی خوب رو به دست آورد و MLP-Mixer هم گفت که به همون اتنشن هم نیازی نیست و میشه بعد از پچ‌پچ‌کردن با دو تا MLP که یکیشون Depth-wise و دیگری Patch-wise هست بازنمایی خوبی را یاد گرفت. (قبلا در https://www.tg-me.com/sg/NLP stuff/com.nlp_stuff/81 و https://www.tg-me.com/sg/NLP stuff/com.nlp_stuff/168 این دو معماری رو معرفی کرده بودیم)

حالا یک مقاله که در TMLR چاپ شده اومده و نویسندگانش گفتن که اصلا بحث اتنشن و MLP نیست. اون چیزی که باعث یادگیری بازنمایی خوب میشه خود patch کردن و استفاده از یک الگوی متقارن (یا به قول خودش isotropic) بین این پچ‌های مختلف هست. بر همین ایده، خودشون اومدن و یک مدل به نام Conv-Mixer ارائه دادن. ساختار و نحوه عملکرد این مدل این شکلیه که تصویر ورودی رو مثل ViT و MLP-Mixer میاد و پچ‌پچ می‌کنه و روی هر پچی هم patch-embedding رو اعمال میکنه (اینجا برای این که ژانگولربازی دربیاره بگه من تو مدلم از هیچ MLP استفاده نکردم اومده و این فرآیند Patch Embedding رو هم با کانولوشن با استراید اندازه سایز پچ انجام داده). سپس در مرحله بعدی میاد و لایه‌ای به نام Conv-Mixer رو به تعداد عمق d روی این پچ‌ها اعمال میکنه. اما هر کدوم از این لایه‌های ConvMixer چه شکلی هستند؟ هر لایه ConvMixer در واقع از دو کانولوشن تشکیل شده. یک کانولوشن که صرفا به صورت depth-wise روی فیچرهای حاضر در یک عمق مشخص کانال و در مکان‌های مختلف اون عمق اعمال میشه و یک کانولوشن دیگه که اون هم به صورت صرفا spatial-wise بر روی فیچرهای حاضر در یک مکان مشخص و در عمق‌های مختلف اون مکان اعمال میشه. در نهایت هم بعد از اعمال d تا از این لایه‌ها میاد و با میانگین‌گیری از بازنمایی پچ‌های مختلف یک بازنمایی کلی برای تصویر به دست میاره. عکس کد این مدل رو پیوست‌ کردیم که بسیار هم ساده است و اگر ببینیدش یحتمل بهتر بتونید بفهمید ماجرا رو.

بعد مقاله اومده و مدل Conv-Mixer و بقیه رقبا نظیر Resnet و ViT و MLP-Mixer رو روی دیتاست ImageNet-1k آموزش داده و نشون داده که Conv-Mixer نسبت به بقیه رقبا دقت بالاتری گرفته و البته تعداد پارامتر کمتر و سرعت Throughput بیشتری هم داره. نکته جالب این مقاله به نظر اینه که نشون داده که برای انتقال بازنمایی بین پچ‌ها لازم نیست که از فرآیند Self-Attention یا MLP-Mixer که هر دو فرآیندهای سنگینی به لحاظ حافظه‌ای هستند و استفاده کنیم و به صورت global اطلاعات بین پچ‌ها رو انتقال بدیم. بلکه میشه با خود کانولوشن این فرآیند انتقال اطلاعات رو به صورت لوکال پیاده‌سازی کنیم. یحتمل این پایان کار نیست و باز هم در آینده مدل‌های بیشتری خواهیم دید که سعی دارن با تغییر در معماری با معماری‌های سابق نظیر ResNet و ViT و MLP-Mixer و البته Conv-Mixer رقابت کنند.

لینک مقاله:
https://openreview.net/pdf?id=rAnB7JSMXL


#read
#paper

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/322

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

NLP stuff from sg


Telegram NLP stuff
FROM USA